Math 1051
Spring 2005 Final Exam Problems

This exam contains 10 multiple-choice questions, worth 3 points each, and 7 written problems, worth 10 points each, for a total of 100 points.

M1. Which of the following lines is perpendicular to the line $y = -3x + 2$ and passes through the point $(3, 2)$?

a) $y = -3x - \frac{1}{2}$.

b) $y = 3x + 2$.

c) $y = -\frac{1}{3}x + \frac{1}{2}$.

d) $y = \frac{1}{3}x + 1$.

e) $y = x - 1$.

M2. Consider the circle given by the equation $x^2 + y^2 + y = 0$. The radius of this circle is

a) 4.

b) 2.

c) 1.

d) $\frac{1}{2}$.

e) $\frac{1}{4}$.

M3. Consider the function $f(x) = 3x^4 + 2x^2 - 1$. The graph of $f(x)$

a) is symmetric with respect to the x-axis.

b) is symmetric with respect to the y-axis.

c) is symmetric with respect to the origin.

d) has no y-intercept.

e) has an x-intercept of $\sqrt{\frac{1}{2}}$.

M4. Which of the following polynomials has a degree of 16 and touches the x-axis exactly 3 times?

a) $f(x) = -3x^2(x - 3)^2(x - 1)^3(x + 1)^3(x + 4)^4$.

b) $f(x) = -3(x - 3)(x - 1)^6(x + 1)^5(x + 4)^4$.

c) $f(x) = 3x^4(x - 3)^2(x - 1)^3(x + 1)^5(x + 4)^2$.

d) $f(x) = 3(x - 3)^4(x - 1)^2(x + 1)^5(x + 4)^4$.

e) None of the above.

M5. Which of the following rational functions has the oblique asymptote $y = 3x + 1$ and a y-intercept of 2?

a) $f(x) = \frac{3x}{x^2 - 3}$.

b) $f(x) = \frac{6x+2}{2x+1}$.

c) $f(x) = \frac{3x^2+4x+2}{x+1}$.

d) $f(x) = \frac{3x^2+2}{x}$.

e) $f(x) = \frac{3x^2+1}{x}$.
M6. The following is a table of values of two one-to-one functions \(f(x) \) and \(g(x) \):

\[
\begin{array}{c|c|c|c|c|c}
 x & -2 & -1 & 0 & 1 & 2 \\
 \hline
 f(x) & 1 & -2 & -1 & 0 & 3 \\
 g(x) & 2 & 0 & -2 & -1 & 5 \\
\end{array}
\]

Which of the following statements is true?

a) \(f \circ g(-2) = -1 \).
b) \(g \circ f(-2) = -1 \).
c) \(f^{-1}(-2) = -2 \).
d) \(g^{-1}(-2) = -2 \).
e) None of the above statements is true.

M7. The domain of the function \(g(x) = \sqrt{\frac{x}{1-x}} \) is given by

a) \([0, \infty)\).
b) \((-\infty, 0)\).
c) \((0, 1)\).
d) \([0, 1)\).
e) all real numbers.

M8. The inverse function of \(f(x) = x + 2 \) is given by

a) \(f^{-1}(x) = \frac{1}{x} + 2 \).
b) \(f^{-1}(x) = x + \frac{1}{2} \).
c) \(f^{-1}(x) = \frac{1}{x+2} \).
d) \(f^{-1}(x) = x - 2 \).
e) \(f^{-1}(x) = -x - 2 \).

M9. The algebraic expression \(\log_2(x) + \log_4(x) \) equals

a) \(\log_4(x) \).
b) \(\log_8(x) \).
c) \(3 \log_2(x) \).
d) \(\frac{3}{2} \log_2(x) \).
e) \(\frac{1}{2} \log_4(x) \).

M10. The value of \(e^{-2 \ln(w)} \) is

a) \(w \).
b) \(\sqrt{w} \).
c) \(w^2 \).
d) \(\frac{1}{w^2} \).
e) \(\sqrt[3]{w} \).
1. A circle C is centered at $(4, 5)$ and touches the x-axis.
 a) Find the equation of the circle C.
 b) Find the y-intercept(s) of the circle C.
 c) What is the radius of a circle whose area is four times the area of the circle C?

2. A line L passes through the points $(0, 4)$ and $(8, 0)$.

 a) Find the equation of the line L.
 b) A rectangle is bounded by the x- and y-axes and by the graph of the line L. Find the area A of the rectangle as a function of x.
 c) What is the domain of the function $A(x)$ found in b)?
 d) For which value of x is the area $A(x)$ from b) a maximum? Find the value of this maximum.

3. Consider the function $f(x) = -|x - 2| + 1$.
 a) Graph the function $f(x)$ using transformations, starting with the graph of $y = |x|$. Clearly list all the transformations that you use!
 b) Using the graph of $f(x)$ obtained in a), answer the following questions:
 i) For which value(s) of x does the graph of $f(x)$ have a local maximum/minimum?
 ii) List the interval(s) on which the graph of $f(x)$ is decreasing, if any.
 iii) Find all intercepts of $f(x)$, if any.

4. Solve the following equations:
 a) $e^{-2x+3} = \frac{1}{e^{x+4}}$.
 b) $\log_2(\log_2(x + 3)) = 1$.
5. Graph the rational function

\[R(x) = \frac{3(x + 1)(x - 2)}{(x + 2)(x - 3)}. \]

To do so, first analyze the function \(R(x) \); in particular, find the domain of \(R(x) \), locate any \(x \)- and \(y \)-intercepts, find all vertical and horizontal or oblique asymptotes and construct a table (intervals, location of the graph with respect to the \(x \)-axis, etc.) as presented in class.

6. Consider the function

\[f(x) = \frac{2x - 1}{x + 3}. \]

Answer the following questions about this function:

a) Find the \(y \)-intercept of the graph of \(f(x) \), if any.

b) Find the \(x \)-intercept(s) of the graph of \(f(x) \), if any.

c) Find \(f^{-1}(x) \) or explain why the function does not have an inverse.

d) Find the domain of \(f(x) \).

e) Find the range of \(f(x) \).

7. The temperature \(F \), in degrees Fahrenheit, of a dessert placed in a freezer for \(t \) hours is given by the rational function

\[F(t) = \frac{60}{t^2 + 2t + 1}, \quad t \geq 0. \]

a) Find the temperature of the dessert after it has been in the freezer for 4 hours.

b) After how many hours in the freezer does the dessert have a temperature of 15\(^\circ \)F?

c) What temperature will the dessert approach as \(t \to \infty \)?

d) What is the average rate of change of the temperature of the dessert during the first 4 hours in the freezer?