Solutions for Final Exam -- Math 1271, Fall 2001

1. This differentiation is an exercise in using the Chain Rule [note that there is a correction given for this problem on the page facing Page 21]:

\[\frac{d}{dx} \left(\cos^3(2x^3) \right) = \frac{d}{dx} \left[\cos(2x^3) \right]^3 = \frac{d}{du} (u^3) \cdot \frac{du}{dx} (2x^3) = 3u^2 \cdot \frac{d}{dx} \left[\cos(2x^3) \right] \]

\[= 3u^2 \cdot \frac{d}{dv} (\cos v) \cdot \frac{dv}{dx} (2x^3) \]

\[= 3u^2 \cdot (-\sin v) \cdot 4x \]

\[= -12x \cdot \sin(2x^3) \cdot \cos^2(2x^3) \]

2. The Mean Value Theorem states that if a function \(f(x) \) is continuous and differentiable on an interval, then there is a point \(x = c \) where \(f'(c) \) is the same as the average slope of the function over the interval. Our function, \(f(x) = (x+2)^3 \cdot 2^x \), as a product of a polynomial times an exponential function, is certainly continuous and differentiable everywhere. The average slope of \(f(x) \) over the interval \([0,2]\) is

\[\frac{f(2) - f(0)}{2 - 0} = \frac{(2+2)^3 \cdot 2^2 - (0+2)^3 \cdot 2^0}{2} \]

\[= \frac{256 - 8}{2} = 124. \] The Mean Value Theorem then guarantees that there is a value for \(c \) in this interval for which \(f'(c) = 124. \)

3. To determine the equation for the tangent line to the curve \(y = x^3 - 2x^2 + 2x + 1 \) at the point \((2,5) \), we will need to know the value of the function's derivative at \(x = 2 \).

\[f(x) = x^3 - 2x^2 + 2x + 1 \Rightarrow f'(x) = 3x^2 - 4x + 2 \Rightarrow f'(2) = 3 \cdot (2)^2 - 4(2) + 2 \]

\[= 12 - 8 + 2 = 6. \] So the slope of the curve at \(x = 2 \) is 6; the equation of the tangent line at \((2,5) \) in point-slope form is \((y - 5) = (12 - 8 + 2)(x - 2) = 6(x - 2). \)

4. Since we are asked to find the limit \(\lim_{x \to 3^-} f(x) \) for this branched function, we will need to use the definition for \(x < 3 \). Thus,

\[\lim_{x \to 3^-} f(x) = \lim_{x \to 3^-} \frac{(x^2 + x - 12)}{(x-3)} = \lim_{x \to 3^-} \frac{(x-3)(x+4)}{(x-3)} = \lim_{x \to 3^-} x + 4 = 7. \]
Since the first derivative, \(f'(x) \), of a function \(f(x) \) indicates its instantaneous rate of change, the function \(f(x) \) is increasing if and only if \(f'(x) > 0 \) and decreasing if \(f'(x) < 0 \).

For the function \(f(x) = x^4 - 6x^2 \), we find that \(f'(x) = 4x^3 - 12x \).

We can then solve the inequalities
\[
f'(x) = 4x^3 - 12x > 0 \Rightarrow 4x(x^2 - 3) > 0
\]
so we must have either
\[
x > 0 \text{ and } x^2 - 3 > 0 \Rightarrow x > 0 \text{ and } x^2 > 3 \Rightarrow x > \sqrt{3}
\]
or \(x < 0 \text{ and } x^2 - 3 < 0 \Rightarrow x < 0 \text{ and } x^2 < 3 \Rightarrow -\sqrt{3} < x < 0
\]

Similarly, \(f'(x) = 4x(x^2 - 3) < 0 \)
\[
\Rightarrow \text{ either } x < -\sqrt{3} \text{ or } 0 < x < +\sqrt{3}.
\]

Thus \(f(x) \) is increasing for \((-\sqrt{3}, 0)\) and \((+\sqrt{3}, \infty)\) and decreasing for \((-\infty, -\sqrt{3})\) and \((0, +\sqrt{3})\). [The choice on the exam includes interval endpoints, which is an arguable decision.]

The second derivative of a function, \(f''(x) \), indicates the rate of change of its slope at a point \(x \). So we have that \(f(x) \) is concave upward if and only if \(f''(x) > 0 \), concave downward if \(f''(x) < 0 \).

For our function, \(f''(x) = 12x^2 - 12 \). If we solve the inequalities, we find
\[
f''(x) = 12x^2 - 12 = 12(x^2 - 1) > 0 \Rightarrow x^2 - 1 > 0
\]
\[
\Rightarrow x^2 > 1 \Rightarrow x > 1 \text{ or } x < -1
\]
and \(f''(x) = 12(x^2 - 1) < 0 \Rightarrow x^2 < 1 \Rightarrow -1 < x < 1
\].

So \(f(x) \) is concave upward over the intervals \((-\infty, -1)\) and \((1, \infty)\) and concave downward for \((-1, 1)\).

If we differentiate the equation \(xy^2 + 3xy + x^2 + 5y = 4 \) implicitly with respect to \(x \), we have
\[
\frac{d}{dx}(xy^2 + 3xy + x^2 + 5y) = \frac{d}{dx}(4)
\]
\[
\Rightarrow (y^2 + x\cdot 2y\cdot \frac{dy}{dx}) + (3y + 3x\cdot \frac{dy}{dx}) + 2x + 5\cdot \frac{dy}{dx} = 0
\]
\[
\Rightarrow (2xy + 3x + 5)\frac{dy}{dx} + (y^2 + 3y + 2x) = 0
\]
\[
\Rightarrow \frac{dy}{dx} = -\frac{y^2 + 3y + 2x}{2xy + 3x + 5}
\]
There are a couple of approaches to differentiating this exponential function. One method is to first change the base of the function to e, since we do not have a rule for differentiating exponentials with other bases:

$$4^{3x+2} = (e^{\ln 4})^{3x+2} = e^{(\ln 4) \cdot (3x+2)}$$

We can now differentiate this form of the function with the Chain Rule:

$$\frac{d}{dx} \left[e^{(\ln 4) \cdot (3x+2)} \right] = \frac{d}{du} (e^u) \cdot \frac{d}{dx} (u)$$

$$= e^u \cdot \frac{d}{dx} \left[(\ln 4) \cdot (3x+2) \right]$$

$$= e^u \cdot \frac{d}{dx} \left[(3)(\ln 4) \cdot x + 2(\ln 4) \right]$$

$$= e^u \cdot (3)(\ln 4)$$

$$= (3)(\ln 4) \cdot e^{(\ln 4) \cdot (3x+2)} = (3)(\ln 4) \cdot 4^{3x+2} \cdot (3x+2)$$

We can also use logarithmic differentiation:

$$y = 4^{3x+2} \quad \Rightarrow \quad \ln y = (3x+2) \cdot \ln 4$$

$$\Rightarrow \quad \frac{d}{dx} (\ln y) = \frac{d}{dx} \left[(\ln 4) \cdot (3x+2) \right]$$

$$= (\ln 4) \cdot \frac{d}{dx} (3x+2)$$

$$\Rightarrow \quad \frac{1}{y} \cdot \frac{dy}{dx} = (\ln 4) \cdot 3$$

$$\Rightarrow \quad \frac{dy}{dx} = 3 \cdot \ln 4 \cdot y = (3 \ln 4) \cdot 4^{3x+2} \cdot (3x+2)$$

If we look at only a small change in the value of x, we can use the approximation

$$f'(x) = \frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} \quad \text{The change in the value of the function is then approximately}$$

$$\Delta y \approx f'(x) \Delta x \quad \text{if we start from a particular value } x = a, \text{ then } \Delta x = (x-a),$$

$$\Delta y = f(x) - f(a), \text{ and we can write } f(x) - f(a) \approx f'(a) \cdot (x-a).$$

For our problem, $f(x) = \sqrt[3]{x}$; to estimate $\sqrt[3]{8.3}$, it will be convenient to start from $\sqrt[3]{8} = 2$, so $a = 8$ and $f(a) = 2$. We still need to find $f'(8)$:

$$f'(x) = \frac{d}{dx} (\sqrt[3]{x}) = \frac{d}{dx} (x^{\frac{1}{3}}) = \frac{1}{3} x^{-\frac{2}{3}} = \frac{1}{3\sqrt[3]{x^2}}$$

$$\Rightarrow \quad f'(8) = f'(x)|_{x=8} = \frac{1}{3\sqrt[3]{64}} = \frac{1}{3 \cdot 2^2} = \frac{1}{12}.$$

So our linear approximation is $f(x) \approx f(8) + f'(8) \cdot (x-a) = 2 + \frac{1}{12} (x-8)$, from which we calculate that $f(8.3) = \sqrt[3]{8.3} \approx 2 + \frac{1}{12} (8.3-8) = 2.025$. (from calculator: 2.02459...
For this function \(f(x) \) with its branched definition, each expression involves a polynomial, so the function is continuous on each individual interval. The only potential locations for discontinuities, then, are at the values of \(x \) where the "branches" join, at \(x = 0 \) and \(x = 2 \).

A function \(f(x) \) is continuous at a point \(x = a \) if \(f(a) \) is defined, \(\lim_{x \to a} f(x) \) exists, and \(\lim_{x \to a} f(x) = f(a) \). For \(x = 0 \), the applicable definition is \(f(x) = |x + 2| \) for \(x < 0 \), so \(f(0) = |0 + 2| = 2 \), which is also the limit "from below".

\[\lim_{x \to 0^-} f(x) = 2 \; \text{the limit "from above" requires the definition of } f(x) \text{ for } 0 < x < 2 \]

and is \(\lim_{x \to 0^+} f(x) = 2 + x^2 = 2 + 0^2 = 2 \); so the two-sided limit \(\lim_{x \to 0} f(x) \) exists and \(\lim_{x \to 0} f(x) = 2 = f(0) \). For \(x = 2 \), the applicable definition is \(f(x) = x^3 \) for \(x \geq 2 \), so \(f(2) = 2^3 = 8 \), which is also the limit "from above".

\[\lim_{x \to 2^+} f(x) = 8 \; \text{the limit "from below" again requires the definition of } f(x) \text{ for } 0 < x < 2 \]

and is \(\lim_{x \to 2^-} f(x) = 2 + x^2 = 2 + 2^2 = 6 \); hence, a two-sided limit does not exist at \(x = 2 \). Our function \(f(x) \) is thus continuous at \(x = 0 \), but not at \(x = 2 \), so it is continuous everywhere except at \(x = 2 \). □

If we calculate the derivatives of \(f(x) = 4x^3 - x^4 \), we find that \(f'(x) = 12x^2 - 4x^3 = 4x^2(3-x) \) and \(f''(x) = 24x - 12x^2 = 12x(2-x) \).

The critical points of \(f(x) \) are given by \(f'(x) = 4x^2(3-x) = 0 \Rightarrow x = 0 \) and \(x = 3 \). Since \(f''(x) = 12x(2-x) = 0 \), it appears that the point at \(x = 0 \) is neither a local maximum nor a local minimum (it may be a point of inflection). On the other hand, \(f''(3) = 12 \cdot 3 \cdot (2-3) = -36 < 0 \), so the point at \(x = 3 \) is a local maximum. The value of \(f(x) \) at this point is \(f(3) = 4 \cdot 3^3 - 3^4 = 27 \); since \(\lim_{x \to -\infty} 4x^3 - x^4 = -\infty \) and \(\lim_{x \to +\infty} 4x^3 - x^4 = -\infty \), the point at \(x = 3 \) is also an absolute maximum. □
12. For a rational function of polynomials, the vertical asymptotes occur where the denominator is zero, provided the numerator is not also zero there; the horizontal asymptote is the limit at infinity" of the function. For our function, \(f(x) = \frac{(3x-1)^2}{9x^2 - 4} \), the full factorization is \(f(x) = \frac{(3x-1)(3x-1)}{(3x+2)(3x-2)} \). It is plain that the denominator is zero at \(x = -\frac{2}{3} \) and \(x = +\frac{2}{3} \) and that the numerator is not zero for those values, so these are the locations of the vertical asymptotes. To find the horizontal asymptote, we may multiply out the binomial-square in the numerator and evaluate the limit at infinity:

\[
\lim_{x \to \infty} \frac{(3x-1)^2}{9x^2 - 4} = \lim_{x \to \infty} \frac{9x^2 - 6x - 1}{9x^2 - 4} = \frac{3}{9} = \frac{1}{3}.
\]

Using division by \(x^2 \) and L'Hôpital's Rule

Thus, the horizontal asymptote is \(y = 1 \).

13. In order to use logarithmic differentiation, we first need to write the logarithm of

\[
y = f(x) = \frac{3\sqrt{x+1}}{(x+2)\sqrt{x+3}} \Rightarrow \ln y = \ln \left(\frac{3\sqrt{x+1}}{(x+2)\sqrt{x+3}} \right)
\]

\[
= \ln (3\sqrt{x+1}) - \ln (x+2) - \ln (\sqrt{x+3})
\]

\[
= \frac{1}{2} \ln (x+1) - \ln (x+2) - \frac{1}{2} \ln (x+3).
\]

We may now differentiate this equation implicitly with respect to \(x \):

\[
\frac{d}{dx} (\ln y) = \frac{d}{dx} \left[\frac{1}{2} \ln (x+1) - \ln (x+2) - \frac{1}{2} \ln (x+3) \right]
\]

\[
\Rightarrow \quad \frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{x+1} \cdot \frac{d}{dx} (x+1) - \frac{1}{x+2} \cdot \frac{d}{dx} (x+2) - \frac{1}{2} \cdot \frac{1}{x+3} \cdot \frac{d}{dx} (x+3)
\]

\[
\Rightarrow \quad \frac{dy}{dx} = y \cdot \left[\frac{1}{3} \cdot \frac{1}{x+1} \cdot 1 - \frac{1}{x+2} \cdot 1 - \frac{1}{2} \cdot \frac{1}{x+3} \cdot 1 \right]
\]

\[
= \left(\frac{3\sqrt{x+1}}{(x+2)\sqrt{x+3}} \right) \cdot \left[\frac{1}{3(x+1)} - \frac{1}{x+2} - \frac{1}{2(x+3)} \right].
\]

We can at last evaluate

\[
f'(1) = \left(\frac{3\sqrt{2}}{(1+2)\sqrt{3}} \right) \cdot \left[\frac{1}{3(1+1)} - \frac{1}{1+2} - \frac{1}{2(1+3)} \right] = \frac{3\sqrt{2}}{3 \cdot 2} \cdot \left(\frac{1}{6} - \frac{1}{3} - \frac{1}{8} \right) = -\frac{7 \cdot 3\sqrt{2}}{144}
\]
We can solve this initial value problem by integration or even just by using our knowledge of anti-derivatives. Starting from \(f'(x) = x - 4x^3 \), we find the general anti-derivative \(f'(x) = \frac{1}{2}x^2 - x^4 + C \). We now solve an "initial-value problem" to find the arbitrary constant \(C \); we are told that \(f'(1) = 2 \), so

\[
\left. f'(x) \right|_{x=1} = \frac{1}{2} \cdot 1^2 - 1^4 + C = \frac{1}{2} - 1 + C = C - \frac{1}{2} = 2 \Rightarrow C = \frac{5}{2}.
\]

The specific solution for the given condition is then \(f(x) = \frac{1}{2}x^2 - x^4 + \frac{5}{2} \). The general anti-derivative for this function, in turn, is \(f(x) = \frac{1}{6}x^3 - \frac{1}{3}x^2 + \frac{5}{2}x + D \).

We then solve a second initial-value problem to determine \(D \). Since \(f(1) = \frac{1}{6} \), we obtain

\[
\left. f(x) \right|_{x=1} = \frac{1}{6} \cdot 1^3 - \frac{1}{3} \cdot 1^2 + \frac{5}{2} \cdot 1 + D = \frac{1}{6} - \frac{1}{3} + \frac{5}{2} + D = \frac{1}{6}
\]

\[
\Rightarrow D = \frac{1}{5} - \frac{5}{2} = \frac{2 - 25}{10} = -\frac{23}{10}.
\]

Our function is thus \(f(x) = -\frac{1}{5}x^5 + \frac{1}{6}x^3 + \frac{5}{2}x - \frac{23}{10} \).

\(\)

a) The volume of a sphere of radius \(r \) is \(V = \frac{4}{3} \pi r^3 \). We can differentiate this equation implicitly with respect to time to find a relationship between the rate at which the sphere's radius changes and the rate at which its volume changes.

\[
\frac{dV}{dt} = \frac{d}{dt} \left(\frac{4}{3} \pi r^3 \right) \Rightarrow \frac{dV}{dt} = \frac{4}{3} \pi \cdot \frac{dr}{dt} (r^3) \cdot \frac{dr}{dt} = \frac{4}{3} \pi \cdot 3r^2 \cdot \frac{dr}{dt} = 4\pi r^2 \frac{dr}{dt}.
\]

We are told that the volume of the balloon is being increased at a rate \(\frac{dV}{dt} = +100 \text{ cm}^3/\text{sec} \). We can solve the "related-rates" equation now to find the rate at which the radius is changing when the diameter of the balloon is 50 cm. (Or the radius, \(r \), is 25 cm.):

\[
\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt} \Rightarrow \frac{dr}{dt} = \frac{1}{4\pi r^2} \cdot \frac{dV}{dt} = \frac{1}{4\pi \left(25 \text{ cm}^\text{2}\right)} \cdot 100 \text{ cm}^3/\text{sec} = \frac{1}{25\pi} \text{ cm/sec}.
\]

b) We can find a similar related-rates equation for the rate at which the surface area of the sphere is changing. If we implicitly differentiate the surface area equation with respect to time, we obtain

\[
\frac{d}{dt} (A) = \frac{d}{dt} (4\pi r^2) = 4\pi \cdot \frac{dr}{dt} (r^2) \cdot \frac{dr}{dt} = 4\pi \cdot 2r \cdot \frac{dr}{dt} = 8\pi r \frac{dr}{dt}.
\]

So at the moment described in part (a), the surface area is changing at the rate \(\frac{dS}{dt} = 8\pi \left(25 \text{ cm}^\text{2}\right) \cdot \left(\frac{1}{25\pi} \text{ cm/sec}\right) = 8 \text{ cm}^2/\text{sec} \).
a) To find the volume of the solid of revolution using the method of cylindrical shells, we need to add up the infinitesimal volumes given by $dV = 2\pi r \cdot h \cdot dr = 2\pi x \cdot f(x) \, dx$. The integration will be along the x-axis, so

$$V = \int_0^5 2\pi x \cdot e^{-x^2} \, dx$$

b) In order to find this volume by the method of disks, we will need to express the function $f(x) = e^{-x^2}$ as a function of y:

$$y = e^{-x^2} \Rightarrow \ln y = -x^2$$

$$\Rightarrow x = \pm \sqrt{-\ln y}$$

Since we are rotating the portion of this curve which is in the first quadrant, we will only want the positive square root: $x = \sqrt{-\ln y}$. The infinitesimal volumes of the disks to be added up are $dV = \pi r^2 \, dy = \pi x^2 \, dy$. However, since the integration is along the y-axis here, we find that we must set up two integrals, one for the (extremely!) thin layer from $y=0$ to $y = e^{-25}$ for which the radius of the disk extends fully from $x=0$ to $x=5$, and the rest of the solid from $y = e^{-25}$ to $y = 1$, where our function $x = g(y)$ applies. The volume of the solid will then be found from

$$V = \int_0^{e^{-25}} \pi \cdot 5^2 \, dy + \int_{e^{-25}}^1 \pi \cdot (\sqrt{-\ln y})^2 \, dy$$

c) If we evaluate the volume using the integral from the method of shells, we find

$$V = 2\pi \int_0^5 xe^{-x^2} \, dx$$

let $u = -x^2$

then $du = -2x \, dx \Rightarrow x \, dx = -\frac{1}{2} \, du$

$$\Rightarrow 2\pi \int_{-25}^0 e^u \left(-\frac{1}{2} \, du\right) = -\pi \int_{-25}^0 e^u \, du = \pi \int_{-25}^0 e^{u} \, du = \pi \left(e^0 - e^{-25}\right) = \pi (1 - e^{-25})$$

which only differs from π starting at the eleventh decimal place.
A rectangle inscribed within a semicircle of radius one will have two of its vertices in contact with the circle. If we call the distance that the rectangle extends from the y-axis to the circle x and the height of the rectangle y, then the area of the rectangle is $A = 2xy$.

To find y in terms of x, we can use the right triangle formed by the height of the rectangle, half of its width, and the radius of the circle, which forms the hypotenuse. This gives us $x^2 + y^2 = 1 \Rightarrow y = \pm \sqrt{1 - x^2}$; we can just use the vertex of the rectangle that lies in the first quadrant, so we will only use the positive square root. So $y = \sqrt{1 - x^2}$ and $A = 2x \cdot \sqrt{1 - x^2}$.

We now look for the critical point of this area function by setting $\frac{dA}{dx} = 0$:

$$\frac{dA}{dx} = \frac{d}{dx} \left[2x \sqrt{1-x^2} \right] = 2 \left(\sqrt{1-x^2} + x \cdot \frac{1}{2 \sqrt{1-x^2}} \cdot (-2x) \right) = 0$$

$$\Rightarrow 2 \sqrt{1-x^2} = \frac{x}{2 \sqrt{1-x^2}} \Rightarrow \sqrt{1-x^2} \cdot \sqrt{1-x^2} = \frac{x^2}{2} \cdot \sqrt{1-x^2}$$

$$\Rightarrow 1 - x^2 = \frac{x^2}{2} \Rightarrow 2x^2 = 1 \Rightarrow x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2} \quad \text{(we will just want the positive square root in the first quadrant)}$$

$$\Rightarrow y = \sqrt{1 - \left(\frac{\sqrt{2}}{2}\right)^2} = \sqrt{1 - \frac{1}{2}} = \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}.$$

The rectangle has dimensions $2x \times y = \sqrt{2} \cdot \frac{\sqrt{2}}{2}$, so the area of the largest possible inscribed rectangle is $A = 1$.

check: the second derivative is

$$\frac{d^2A}{dx^2} = \frac{d}{dx} \left[2 \cdot \frac{1}{2} \cdot \frac{1}{\sqrt{1-x^2}} \cdot (-2x) \right] - \frac{\sqrt{1-x^2} \cdot (4x) - 2x^2 \cdot \frac{1}{4(1-x^2)} \cdot (-2x)}{(\sqrt{1-x^2})^2}$$

$$= -6x (1-x^2) - 2x^3 \quad \text{for} \quad x = \frac{\sqrt{2}}{2}, \quad \frac{d^2A}{dx^2} = \frac{2x (2x^2 - 3)}{(1-x^2)^{3/2}} = \frac{2 \left(\frac{\sqrt{2}}{2} \right) \left(2 \cdot \frac{1}{2} - 3 \right)}{(1-\frac{1}{2})^{3/2}} = 0,$$

so the critical point is a local maximum.
The Fundamental Theorem of Calculus tells us that if \(f(x) \) is continuous, then
\[
\int_a^b f(x) \, dx = F(b) - F(a)
\]
where \(F(x) \) is the anti-derivative of \(f(x) \). If the upper limit of the integral is a function \(u(x) \), we can write
\[
\int_a^{u(x)} f(x) \, dx = F(u(x)) - F(a); \text{ the derivative of this integral is then}
\]
\[
\frac{d}{dx} \left[\int_a^{u(x)} f(x) \, dx \right] = \frac{d}{dx} F(u(x)) - \frac{d}{dx} F(a)
\]
\[
= \left[\frac{d}{du} F(u) \cdot \frac{du}{dx} \right] - 0
\]
\[
= f(u(x)) \cdot \frac{du}{dx}
\]
[Leibniz's Rule]

For our problem with a function \(g(x) \) defined by
\[
g(x) = \int_{\sqrt{x}}^{x^2} \sqrt{t} \sin t \, dt
\]
we need to write it first in the form of integral functions with constant lower limits:
\[
g(x) = \int_{\sqrt{x}}^{a} \sqrt{t} \sin t \, dt + \int_{a}^{x^2} \sqrt{t} \sin t \, dt
\]
\[
= -\int_{a}^{\sqrt{x}} \sqrt{t} \sin t \, dt + \int_{a}^{x^2} \sqrt{t} \sin t \, dt
\]
Applying Leibniz's Rule, then gives us
\[
g'(x) = \frac{d}{dx} \left[-\int_{a}^{\sqrt{x}} \sqrt{t} \sin t \, dt \right] + \frac{d}{dx} \left[\int_{a}^{x^2} \sqrt{t} \sin t \, dt \right]
\]
\[
= -\left[\sqrt{t} \sin t \right]_{t=\sqrt{x}} \cdot \frac{d}{dx} (\sqrt{x}) + \left[\sqrt{t} \sin t \right]_{t=x^2} \cdot \frac{d}{dx} (x^2)
\]
\[
= -(\sqrt{x} \sin \sqrt{x}) \cdot \frac{1}{2\sqrt{x}} + (\sqrt{x^2} \sin x^2) \cdot 2x
\]
\[
= 2x^2 \sin (x^2) - \frac{1}{2\sqrt{x}} \sin (\sqrt{x})
\]