Math 1051
Spring 2003 Final Exam Problems

This exam contains 15 multiple-choice questions, worth 3 points each, and 6 written problems, worth 9 points each (10 for #5), for a total of 100 points.

M1. After simplification, the expression \(x + 1 - \frac{x^2 + 2x}{x + 1} \) reads

a) \(x^2 + 2x \);

b) 1;

c) \(1 - x^2 - 2x \);

d) 2;

e) \(1/(x + 1) \).

M2. Multiply polynomials \((x - a)(x^3 + ax^2 + a^2x + a^3) \).

The result after simplification is

a) \(x^4 + ax^3 + a^2x^2 + a^3x \);

b) \(x^2 + 2ax + a^2 \);

c) \(-ax^3 - a^2x^2 - a^3x - a^4 \);

d) \(x^4 - a^4 \);

e) none of the above.

M3. The expression \(x^{1/2}y^{-3/2}z^{1/6} \) is equal to (assuming that \(x, y, z > 0 \))

a) \(\frac{1}{3} \cdot \frac{3}{2} \cdot \frac{1}{6} \cdot z \);

b) \(-\frac{3}{48} \cdot \frac{1}{2} \cdot \sqrt{2} \);

c) \(\sqrt{2} \cdot \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{6}} \);

d) \(x^{1/4}y^{1/6} - y^{5/6} \);

e) none of the above.

M4. The Least Common Multiple of the polynomials

\((x + 1)(x - 2)(x + 3), (x + 1)^3(x - 2), (x + 3)^2(x + 1) \)

is

a) \((x + 1)^3(x - 2)^2(x + 3)^2 \);

b) \((x + 1)^4(x - 2)^3(x + 3)^3 \);

c) \((x + 1)(x - 2)(x + 3) \);

d) \((x + 1)^4 + (x - 2)^3 + (x + 3)^4 \);

e) \((x + 1), (x - 2), (x + 3) \).
M5. Divide $x^4 - x + 1$ by $x^2 + 1$. The quotient after division is
 a) $x^2 + x$;
 b) $x^3 + x^2 + x + 1$;
 c) $x^3 - x$;
 d) $x^3 - 3$;
 e) $x^3 - x^2 - x - 1$.

M6. Find the midpoint M of the segment P_1P_2, $P_1 = (3, 1)$, $P_2 = (-2, 4)$. The answer is
 a) $M = (5/2, -3/2)$;
 b) $M = (1/2, 5/2)$;
 c) $M = (5/2, 1/2)$;
 d) $M = (1/3, 2/3)$;
 e) $M = (1, 1)$.

M7. If a leg of a right triangle has length 3 and the hypotenuse has length 4, then the other leg will have length
 a) $\sqrt{5}$;
 b) 5;
 c) $\sqrt{7}$;
 d) 7;
 e) none of the above.

M8. Consider functions $f(x) = \frac{1}{x^2 + 4x + 1}$, $g(x) = \frac{1}{x} + 3$. Which from the following is equal to $(g \circ f)(x)$ after the simplification?
 a) $\frac{1}{x^2 + 4x + 1} + 3$;
 b) $\left(\frac{1}{x} + 3\right)\left(x^2 + 4x + 1\right)$;
 c) $(x + 2)^2$;
 d) $x^2 + 4x + 1$;
 e) $\frac{x^2 + 4x + 1}{x} + 3$.

M9. If $(1, b)$ is a point on the graph of $y = x^2 - 1$, what is b?
 a) 0;
 b) -1;
 c) 1;
 d) $b^2 - 1$;
 e) 2.
M10. The Average Rate of Change of the function \(f(x) = 1 + x^2 \) from \(x = 1 \) to \(x = 3 \) is

a) 1;
b) \(f(0) \);
c) \(f(x) - f(0) \);
d) 5;
e) 4.

M11. Which from the following is true about the rational function \(R(x) = \frac{3x^4 - 2x^3 + x + 1}{x^3 - 1} \)?

a) \(R(x) \) has a horizontal asymptote \(y = 0 \);
b) \(R(x) \) has an oblique asymptote \(y = 3x - 2 \);
c) \(R(x) \) has an oblique asymptote \(y = 1/x \);
d) \(R(x) \) has a horizontal asymptote \(y = 3 \);
e) none of the above.

M12. The value of \(\frac{\log_b(y^4)}{\log_b(x^2)} \) is equal to (assuming \(a, b > 0, a, b \neq 1, \) and \(y > 0 \)).

a) \(2 \log_b y \);
b) \(\log_b(y^4/x^2) \);
c) \(\log_b(y) \log_b(x^2) \);
d) \(\log_b(y^4/x^2) \);
e) none of the above.

M13. The inverse function \(f^{-1}(x) \) to the function \(f(x) = 1/x \) is

a) \(x^2 \);
b) \(1/\sqrt{x}, x > 0 \);
c) \(\sqrt{x}, x > 0 \);
d) \(1/x, x \neq 0 \);
e) none of the above.

M14. Which from the following statements is true?

a) \(e^\pi = N \) is equivalent to \(\ln N = \pi \);
b) \(\pi^\pi = M \) is equivalent to \(\ln M = \pi \);
c) \(M^N = e \) is equivalent to \(\ln N = \ln M \);
d) \(Z^e = e \) is equivalent to \(\ln Z = y \);
e) \(W^y = y \) is equivalent to \(\ln W = y \).

M15. The domain of the function \(f(x) = \log_{1-x}(x + 1) \) is

a) \(x \neq -1 \) and \(x \neq 1 \);
b) \(x > 1 \) or \(x < -1 \);
c) \(1 < x < -1 \) and \(x \neq 0 \);
d) \(x \neq -1, x \neq 0, \) and \(x \neq 1 \);
e) \(x > 0 \).
1. Simplify the expression

\[1 - \frac{1}{1 + \frac{1}{1 - \frac{1}{x}}} \]

2. Determine the domain of the function

\[f(x) = \frac{1}{\sqrt{x} - 2} + \ln(x - 3). \]

3. Find the center and the radius of the circle

\[x^2 + y^2 - 6x + 8y = 0. \]

4. What function is finally graphed after the following transformations are applied to the graph of

\[f(x) = \sqrt{x} + x \]

a) reflect about \(Y \)-axis;
b) compress horizontally by a factor of 2;c) shift left 1 unit.

5. Graph the rational function

\[R(x) = \frac{x^3 - 27}{x^2 - 2x - 3} \]

6. Solve logarithmic equation

\[\log_4(x + 3) + \log_4 x = 1. \]